Free Newsletter
Register for our Free Newsletters
Associations, Services and Universities
Automotive Industry
Design & Manufacturing Services
Education, Training and Professional Services
Electrical Components
Electronic Components
Fastening and Joining
Laboratory Equipment
Machine Building & Automation
Maintenance, Repair and Overhaul (MRO)
Materials & Processes
Materials Processing and Machine Tools
Mechanical Components
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec

A vision of the smart factory of the future

Belden (USA) : 07 February, 2015  (Technical Article)
When it comes to industrial networking today, many factories and process control facilities around the world are focused on upgrading to managed Ethernet networks. With the long, useful life of industrial devices, there is plenty of old equipment using legacy industrial protocols in active service. Andreas Dreher, strategic technology manager at Hirschmann Automation and Control, looks at the process of helping companies upgrade to structured, reliable and easy-to-maintain industrial Ethernet infrastructure.
A vision of the smart factory of the future
It is instructive to step away from current challenges and look ahead to the Factory of the  Future. What will industrial production look like 5-20 years from now? What do we need to understand about where factories are going to guide my decisions today? How will a factory compete with brand new factories that use next generation communication systems and concepts? Where does the industrial Internet of Things fit in?
The Smart Factory of the Future will consist of systems that are more intelligent, flexible and dynamic than the ones in use today. The terms “Smart Factory,” “Smart Manufacturing,” “Intelligent Factory” and “Factory of the Future” all describe a vision of what industrial production will look like in the future. In this vision, the Smart Factory will be much more intelligent, flexible and dynamic - manufacturing processes will be organized differently, with entire production chains – from suppliers to logistics to the life cycle management of a product – closely connected across corporate boundaries.
Individual production steps will be seamlessly connected. The processes impacted will include:
  • Factory and production planning
  • Product development
  • Logistics
  • Enterprise resource planning (ERP)
  • Manufacturing execution systems (MES)
  • Control technologies
  • Individual sensors and actuators in the field
The Smart Factory of the Future is based on a fourth industrial revolution. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making. This is in stark contrast to running fixed program operations, as is the case today.
To do this, the future structure of factories will be much different: an inter-connected combination of intelligent production technologies, with the newest high-performance information and communication technologies. This will provide digitally integrated engineering and horizontal integration across the entire value chain, as well as vertical integration and connectivity across all levels of production. High-performance, reliable communication technology will exceed what is currently in use. This technology will make it possible to:
  • Transfer large amounts of data in real-time and with minimum delay
  • Connect a large number of individual devices in a very reliable manner and with the highest standards of data security
  • Utilize more and more wireless technologies, both within the plant and for remote connectivity
  • Operate in an energy-efficient manner
Structure of future industrial automation systems
Today’s industrial automation systems consist of several clearly separated levels typically represented as a pyramid with:
  • Field level actuators and sensors
  • Control level control devices, I/O modules and operator terminals
  • A process management level with computers for engineering, supervisory control and data acquisition (SCADA) and MES systems
  • An enterprise level with business processes and ERP systems, typically located on servers in the IT data centre
Each of these levels is relatively well structured and individual devices can be clearly mapped to one of the levels. In the Factory of the Future, the field level remains distinct, but other levels migrate to server farms or the cloud. With Industry 4.0, the system structure changes. The field level remains a separate dedicated level, as it is now, but the devices on it will embed more and more intelligence. As parts of cyber-physical systems, they will autonomously perform many processes. Field level devices will also significantly increase in numbers.
All functions located above the field level will potentially move to high-performance servers located in a server cluster, data center or in a “cloud.” Virtualization, the separation of specific functions and processing hardware, which is already state-of-the-art in the IT world, will become commonplace in the factory.
The advantage of this structure is that it reduces the variety of devices, which results in easier management, better utilization of resources and a clear cost savings. This approach has not yet been adopted in automation because of issues related to performance, required determinism, reliability, and the lack of fast, low latency communication from the servers to the field level. Nonetheless, these issues will be addressed in new and upcoming systems.
An example is where the energy consumption in a vehicle assembly line is reduced when the line is not operation. Today, many production lines continue running during breaks and weekends. Consider laser welding technology that remains powered up over weekends so it can resume quickly on Monday. This practice consumes up to 12% of total energy consumption of the assembly line.
With Industry 4.0 and cyber-physical systems, robots will go into standby mode as a matter of course during short production breaks and power down during longer breaks. Speed-controlled motors that reduce the energy required to run machines will be widespread. Such changes will significantly reduce energy consumption and will be taken into account upfront as part of Smart Factory design practices.
Bookmark and Share
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
   © 2012
Netgains Logo